

Analysis and Design of Highly Efficient Polarization Independent Transmission Gratings

Abstract

Gratings, especially those with feature size comparable to the wavelength, are known to possess polarization-dependent optical properties. That makes it difficult to design gratings with high diffraction efficiencies for arbitrary polarizations. Following the concept reported in literature [T. Clausnitzer, et al., Proc. SPIE 5252, 174-182 (2003)], we show how to analyze the polarization-dependent property of gratings rigorously, as well as how to use parametric optimization to design polarization-independent gratings with high diffraction efficiency.

Design Task

reference: T. Clausnitzer, *et al.*, "Highly efficient polarization independent transmission gratings for pulse stretching and compression," Proc. SPIE **5252**, 174-182 (2003)

How to optimized the grating structure parameters so to maximize the diffraction efficiency of -1st transmission order, for unpolarized input light?

	Parameter	Value Range				
2	grating depth h	0.1-10µm				
	grating period d	550-1350nm				
	fill factor f	20-80%				

Rigorous Analysis of Grating Property vs. Parameters

Diffraction Efficiency @ Different Grating Periods

Numerical Data Array

Efficiency Ex-Direction [%]

- • ×

99

49.5

ТΜ

28: 1060nm Period [TE]

27: 1060nm Period [TM]

Diagram Table Value at (x,y)

49.5

TM

Considerations on Grating Period Choice

Large period leads to higher diffraction orders in the substrate, and causes additional modulation in the efficiency.

period=1350nm

period=1060nm

Diagram Table Value at (x,v)

fficiency Ev-Direction [%]

Modulation Depth (Re... [µm]

To ensure -1st transmission order exist (in air) and to avoid higher diffraction orders (in substrate), the grating period follows

$$\lambda/2 < d < 3\lambda/2n$$

where n is the refractive index of the substrate.

TE

period=795 nm

TΜ

Similar analysis can be found in T. Clausnitzer, *et al.*, Proc. SPIE **5252**, 174-182 (2003).

Polarization-Dependent Diffraction Property

diffraction efficiency analysis for given period 1060nm

Parameter	value
grating depth h	0.1-10µm
grating period d	1060 nm
fill factor f	20-80%

diffraction efficiencies vs. grating depth (grating period=1060nm, fill factor=50%)

Polarization-Dependent Diffraction Property

diffraction efficiency analysis for given period 795nm

0.1-10µm

795nm

20-80%

analysis of diffraction efficiency with fixed fill factor 50%

grating depth h

grating period d

fill factor f

Polarization-Dependent Diffraction Property

diffraction efficiencies vs. grating depth (grating period=1060nm, fill factor=50%)

diffraction efficiencies vs. grating depth (grating period=**795nm**, fill factor=50%)

When grating period changes from 1060nm to 795nm

- the TE peak efficiency position shifts toward right i.e. larger grating depth;
- the TM peak efficiency position shifts toward left i.e. smaller grating depth.

Grating Design by Parametric Optimization

We use fixed period of 1060nm, with grating depth and fill factor as variables, and try to optimize the averaged diffraction efficiency.

The average diffraction efficiency can be defined as

$$\eta^{\rm avg} = \frac{1}{2} \left(\eta^{\rm TE} + \eta^{\rm TM} \right) \,,$$

and it is to be maximized within the following parameter range

Parameter	Value Range					
grating depth h	0.5-3.5µm					
fill factor f	30-70%					
grating period d	1060nm (fixed)					

To keep a relatively low aspect ratio, we defined a reduced variation range of the grating depth and fill factor for design.

2D Parametric Optimization – Design #1

parametric optimization – downhill simplex

Diffraction efficiency in each optimization step is calculated using Fourier modal method (FMM, also known as RCWA).

optimized parameters

5

	Parameter	Value				
ſ	grating depth h	2.22µm				
	fill factor f	59%				
	grating period d	1060nm (fixed)				

2D Parametric Optimization – Design #2

parametric optimization – downhill simplex

Diffraction efficiency in each optimization step is calculated using Fourier modal method (FMM, also known as RCWA).

optimized parameters

	Parameter	Value					
	grating depth h	2.56µm					
l	fill factor f	66%					
	grating period d	1060nm (fixed)					

The same resulting parameters can be found in T. Clausnitzer, *et al.*, Proc. SPIE **5252**, 174-182 (2003).

Fabrication Tolerance Analysis – Design #2

3D Parametric Optimization with Varying Grating Period

Fabrication Tolerance Analysis

Peek into VirtualLab Fusion

intuitive grating parameters specification

Edit Rectangular Grating Interface Structure Height Discontinuities Scaling of Elementary Interface Periodizi	tion								special d	letector fo	or polariza	ation-
Special Rectangular Grating Values Relative Slit Width 50 %		e\\ParametricOp	itimiza	tion3D_02_Optimization.op	t				Edit Polarization Analyz			×
Common Grating Values Extension Grating Period 1.06 µm Modulation Depth	fications fy the constraints which shall be considered during optimization.						Transmission Reflection Analyzed Orders					
Position Lateral Shift 0 mm Rotation Angle	Polarization Analyzer #801	Constraint Name Stack #2 Stack #2 Stack #2 Efficiency Ex- Efficiency Ey-	Use	Weight Constraint Type 1 Range 1 Range 1 Range 1 Range	Value 1 800 nm 500 nm 30 %	Value 2 1.096 μm 3.5 μm 70 %	Start Value 1.06 μm 3.5 μm 70 %	Con	Selection Strategy Minimum Order Maximum Order	Order Range X -1÷	Y -3 € 3 €	
		Average		1 Target Value	100 %		82.383 %		Output Efficiency Ex-Dir Efficiency Ey-Dir Vary Wavelength a	rection	Polarization Contrast Average Efficiency	
	Tools 🎢 🗸				Targe	et Function \	/alue < Back	0.031034	4 Update			

parametric optimization tools with friendly user interface

Workflow in VirtualLab Fusion

- Construct grating structure
 - <u>Configuration of Grating Structures by Using</u> <u>Interfaces</u> [Use Case]
- Analyze grating diffraction efficiency
 - Grating Order Analyzer [Use Case]
- Search for initial solutions with Parameter Run
 - Usage of the Parameter Run Document [Use Case]
- Find final design with Parametric Optimization

gSetup_03_Period=1060nm_2DEfficiencyScan.run							
analyze its results							
			ltera	ation Step			
Combined Outp	ut	1	2	3	4		
Data Array	1	100 nm	100 nm	100 nm	100 nm	1	
Data Array	1	20 %	24.286 %	28.571 %	32.857 %	37.1	
Data Array	1	0.23096 %	0.32292 %	0.41235 %	0.49063 %	0.550	
Data Array	1	0.070309 %	0.11235 %	0.16112 %	0.21291 %	0.263	
Data Array	1	0.3916 %	0.53349 %	0.66358 %	0.76835 %	0.838	
						>	
			< Back	Next >	Sho	w •	
	DEfficiencyScan.ru Combined Outpu Data Array Data Array Data Array Data Array Data Array Data Array	DefficiencyScan.run Combined Output Data Array	DefficiencyScan.run Combined Output Data Array	DEfficiencyScan.run Itera Combined Output Data Array Data Array Data Array Data Array Data Array Data Array O.23096 % 0.32292 % Data Array O.070309 % 0.11235 % Data Array O.3916 % 0.53349 % Kata Array	Combined Output 1 2 3 Data Array 100 nm 100 nm 100 nm Data Array 20 % 24.286 % 28.571 % Data Array 0.23096 % 0.32292 % 0.41235 % Data Array 0.070309 % 0.11235 % 0.16112 % Data Array 0.3316 % 0.53349 % 0.66358 %	Iteration Step Combined Output 1 2 3 4 Data Array 100 nm 100 nm 100 nm 100 nm Data Array 20 % 24.286 % 28.571 % 32.857 % Data Array 0.23096 % 0.32292 % 0.41235 % 0.49063 % Data Array 0.070309 % 0.11235 % 0.16112 % 0.21291 % Data Array 0.3916 % 0.53349 % 0.66358 % 0.76835 %	

VirtualLab Fusion Technologies

Document Information

title	Analysis and Design of Highly Efficient Polarization Independent Transmission Gratings
document code	GRT.0015
version	1.0
toolbox(es)	Grating Toolbox
VL version used for simulations	7.5.0.158
category	Application Use Case
further reading	 <u>Ultra-Sparse Dielectric Nano-Wire Grid Polarizers</u> <u>Rigorous Analysis of Nanopillar Metasurface Building Block</u> <u>Parametric Optimization and Tolerance Analysis of Slanted Gratings</u>